Cellular responses to photodynamic therapy (PDT) include induction of heat shock proteins (HSP). We examined meso-tetrahydroxyphenyl chlorin (mTHPC) PDT–mediated HSP activation in EMT6 cells stably transfected with a plasmid containing the gene for green fluorescent protein (GFP) driven by an hsp70 promoter. mTHPC incubation induced concentration-dependent GFP expression. Irradiation of cells exposed to a sensitizer concentration that induced a slight increase in GFP and no loss of cell viability resulted in fluence-dependent GFP accumulation. In response to drug only and to PDT, GFP levels increased to a maximum of four- to five-fold above control levels with increasing drug or fluence and then decreased at higher doses. A trypan blue–exclusion assay confirmed that decreased GFP levels in both cases were due to a loss of cell viability. For initial evaluation in vivo, HSP70/GFP–transfected EMT6 tumors were grown in BALB/c mice and subjected to mTHPC-PDT with a fluence of 1 J/cm2. Six hours after PDT, GFP fluorescence was imaged in these tumors through the intact skin in vivo. These results indicate that sublethal doses of mTHPC-PDT stimulate GFP expression under the control of an hsp70 promoter and illustrate the potential of noninvasively monitoring reporter protein fluorescence as a measure of molecular response to PDT.
How to translate text using browser tools
1 December 2003
Activation of Heat Shock Protein 70 Promoter with meso-Tetrahydroxyphenyl Chlorin Photodynamic Therapy Reported by Green Fluorescent Protein In Vitro and In Vivo
Soumya Mitra,
Evan M. Goren,
John G. Frelinger,
Thomas H. Foster
ACCESS THE FULL ARTICLE
It is not available for individual sale.
This article is only available to subscribers.
It is not available for individual sale.
It is not available for individual sale.
Photochemistry and Photobiology
Vol. 78 • No. 6
December 2003
Vol. 78 • No. 6
December 2003